博客
关于我
【点云StatisticalOutlierFilter】python-pcl:去除离群点
阅读量:204 次
发布时间:2019-02-28

本文共 779 字,大约阅读时间需要 2 分钟。

点云去除离群点

方法:使用K近邻方法进行点云处理,通过计算标准距离筛选离群点。具体实现如下:

原理:K近邻算法用于确定每个点的邻近点数,计算标准距离。设置离群点的标准为距离超过标准距离乘以系数后的点数。

结果:将点云分为内点和离群点两部分。通过设置参数,可选保存离群点或保留内点的点云文件。

官方示例效果表现为:通过去除柱子腿周围的离散点,显著清洁了点云数据。

注意:在实际应用中,点云密度较大时,效果可能会受到影响,建议根据具体需求调整参数。

import pcldef main():    # 加载点云数据    p = pcl.load("D:/tests/tutorials/table_scene_lms400.pcd")        # 初始化滤镜并设置参数    fil = p.make_statistical_outlier_filter()    fil.set_mean_k(50)  # 设置近邻点数    fil.set_std_dev_mul_thresh(1.0)  # 设置标准差倍数        # 过滤并保存内点    inlier_cloud = fil.filter()    pcl.save(inlier_cloud, "D:/tests/tutorials/table_scene_lms400_inliers.pcd")        # 设置保存离群点    fil.set_negative(True)    outlier_cloud = fil.filter()    pcl.save(outlier_cloud, "D:/tests/tutorials/table_scene_lms400_outliers.pcd")if __name__ == "__main__":    main()

转载地址:http://oaai.baihongyu.com/

你可能感兴趣的文章
Node中同步与异步的方式读取文件
查看>>
node中的get请求和post请求的不同操作【node学习第五篇】
查看>>
Node中的Http模块和Url模块的使用
查看>>
Node中自启动工具supervisor的使用
查看>>
Node入门之创建第一个HelloNode
查看>>
node全局对象 文件系统
查看>>
Node出错导致运行崩溃的解决方案
查看>>
Node响应中文时解决乱码问题
查看>>
node基础(二)_模块以及处理乱码问题
查看>>
node安装卸载linux,Linux运维知识之linux 卸载安装node npm
查看>>
node安装及配置之windows版
查看>>
Node实现小爬虫
查看>>
Node提示:error code Z_BUF_ERROR,error error -5,error zlib:unexpected end of file
查看>>
Node提示:npm does not support Node.js v12.16.3
查看>>
Node搭建静态资源服务器时后缀名与响应头映射关系的Json文件
查看>>
Node服务在断开SSH后停止运行解决方案(创建守护进程)
查看>>
node模块化
查看>>
node模块的本质
查看>>
node环境下使用import引入外部文件出错
查看>>
node环境:Error listen EADDRINUSE :::3000
查看>>